Gas Mixture Percent by Mass

A mixture of oxygen and helium is 87.4% by mass oxygen with a total pressure of 675 Torr. What is the partial pressure of oxygen in this mixture?

- 1. 688 Torr
- **2.** 590 Torr
- **3.** 299 Torr
- 4. 314 Torr correct
- **5.** 333 Torr

Explanation:

Assume you have 100 g of this mixture; calculate the number of moles:

$$\begin{split} n_{\rm O_2} &= (87.4 \; {\rm g \; O_2}) \; \frac{1 \; {\rm mol \; O_2}}{31.9988 \; {\rm g \; O_2}} \\ &= 2.73135 \; {\rm mol \; O_2} \, . \end{split}$$

$$n_{\text{He}} = (12.6 \text{ g He}) \frac{1 \text{ mol He}}{4.0026 \text{ g He}}$$

= 3.14795 mol He.

$$\begin{split} n_{\rm tot} &= n_{\rm O_2} + n_{\rm He} \\ &= 2.73135 \; {\rm mol} \; {\rm O_2} + 3.14795 \; {\rm mol} \; {\rm He} \\ &= 5.87931 \; {\rm mol} \; {\rm gas} \end{split}$$

Dalton's Law:

on s law.

$$P_{O_2} = P_{\text{tot}} \times \chi_{O_2}$$

$$= P_{\text{tot}} \times \frac{n_{O_2}}{n_{\text{tot}}}$$

$$= (687 \text{ Torr}) \frac{2.73135 \text{ mol } O_2}{5.87931 \text{ mol gas}}$$

$$= 313.585 \text{ Torr}$$

KMT Calculation Modified

If the average speed of a $\rm CO_2$ molecule is 411 m \cdot s⁻¹ at 25°C, what is the average speed of a molecule of $\rm CH_4$ at the same temperature?

- 1. $247 \text{ m} \cdot \text{s}^{-1}$
- **2.** $410 \text{ m} \cdot \text{s}^{-1}$
- 3. $681 \text{ m} \cdot \text{s}^{-1} \text{ correct}$
- **4.** $1130 \text{ m} \cdot \text{s}^{-1}$
- 5. $1000 \text{ m} \cdot \text{s}^{-1}$

Explanation:

From kinetic molecular theory, the temperature is directly proportional to mean KE. $KE_{mean} = \frac{1}{2}(MW)$ (average molecular speed)² and knowing T is constant,

$$\begin{split} \frac{v_{\text{CH}_4}}{v_{\text{CO}_2}} &= \sqrt{\frac{\text{MW}_{\text{CO}_2}}{\text{MW}_{\text{CH}_4}}} \\ v_{\text{CH}_4} &= v_{\text{CO}_2} \sqrt{\frac{\text{MW}_{\text{CO}_2}}{\text{MW}_{\text{CH}_4}}} \\ &= (411 \text{ m/s}) \sqrt{\frac{44.0098 \text{ g/mol}}{16.0426 \text{ g/mol}}} \end{split}$$